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Abstract

Histone deacetylases (HDACs) represent emerging therapeutic targets in the

context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs

activity in the nervous system has shown beneficial effects in several preclinical

models of neurological disorders. However, the translation of such therapeutic

approach to clinics has been only marginally successful, mainly due to our still

limited knowledge about HDACs physiological role particularly in neurons.

Here, we review the potential benefits along with the risks of targeting HDACs

in light of what we currently know about HDAC activity in the brain.

Introduction

Histone deacetylases (HDACs) are enzymes that catalyze

the removal of acetyl groups from lysine residues of

proteins. Initially studied for their ability to deacetylate hi-

stones and influence chromatin, HDACs also remove acetyl

groups from non-histone substrates thus playing a broader

role in cell biology.1,2 In recent years, HDACs have received

increasing attention in the context of neurological disease

not only because protein acetylation has been implicated in

neuropathology in myriad ways but also because HDACs

are druggable targets. In this review, we present an over-

view of the HDAC superfamily, describe the role of HDACs

in a few emblematic neurological disorders, and then move

on to discuss the potential neurological side effects of mod-

ulating HDAC functions, particularly as we learn more

about the functions of HDACs in the nervous system.

The HDAC Superfamily

HDACs belong to an evolutionary conserved family

divided into four classes.3 Classes I, II, and IV are similar

in that they all require Zn2+ as a cofactor.4 Class III, on

the other hand, requires nicotinamide adenine dinucleo-

tide (NAD+).5

Each of these classes, with the exception of class IV, is

composed of more than one member. In addition, the

metazoan HDACs are also often described by their

homology to yeast HDACs, the first enzymes of that cate-

gory to be characterized. Thus, the Class I family of

HDACs – homologous to the yeast HDAC reduced potas-

sium dependency 3 (RPD3) – includes HDAC1, 2, 3, and

8. These HDACs, with the exception of muscle-specific

HDAC8, are expressed widely in the brain.6,7 Class I

HDACs interact with key proteins as part of large multi-

unit complexes. The complexes they form vary. Thus,

HDACs 1 and 2 share a high level of structural and func-

tional similarity and participate in the formation of large

transcriptional repressor complexes defined by the pro-

teins SIN3A, nucleosome remodeling deacetylase (NuRD),

and Co-REST8; HDAC3 on the other hand interacts with

another set of corepressors defined by the proteins silenc-

ing mediator for retinoid or thyroid-hormone receptor

(SMRT) and nuclear receptor corepressor (NCoR).9
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HDACs 1 and 2 are strictly observed in the nucleus.

Hence, it should not be surprising that their substrates

are nuclear – these include the transcription factors p53,

MyoD, E2F, yin yang 1 (YY1), retinoblastoma protein

(pRb), and the estrogen receptor (ER).10–15 HDAC3 shut-

tles between the nucleus and the cytoplasm and deacety-

lates substrates in either compartment. The nuclear

substrates include the transcription factors myocyte

enhancer factor-2 (MEF2), sex-determining region Y

(SRY) and P300/CBP-associated factor (PCAF); the cyto-

solic substrates include p65 and signal transducers and

activators of transcription (STAT) proteins 1 and 3.16–21

The Class II family of HDACs – homologous to the

yeast Histone Deacetylase 1 (HDA1) – is further divided

based on structural parameters into two subclasses: class

IIa includes HDACs 4, 5, 7, and 9; while class IIb includes

HDAC6 and HDAC10. Members of both subclasses

display tissue- and cell-specific expression, but impor-

tantly they are all expressed in the brain.22 At a subcellu-

lar level, HDAC6 is present predominantly in the cytosol

functioning as a potent deacetylase of a-tubulin,23,24

although recently other substrates of HDAC6 have been

identified. These include the chaperone heat shock pro-

tein 90 (HSP90), the actin-binding protein cortactin, and

b-catenin.25–27 The other class II HDACs shuttle between

the nucleus and cytosol. Their cytoplasmic retention is

dependent on phosphorylation and interactions with 14-

3-3 proteins.28 Non-histone nuclear substrates include the

transcription factors p53 and runt-related transcription

factor 2 (RUNX2) in the case of HDAC4; GATA1 in the

case of HDAC5; H1F1a in the case of HDAC7; structural

maintenance of chromosomes 3 (SMC3) in the case of

HDAC8; paired box 3 (Pax3) and KRAB-associated pro-

tein-1 (KAP1) in the case of HDAC10.29–34 Their cyto-

plasmic substrates include myeloproliferative leukemia

oncogene (MPL) and DNAJB8 – both deacetylated by

HDAC4, tripartite motif-containing protein 29 (TRIM29)

and heat shock protein 70 (HSP70), substrates of HDAC9

and HDAC10, respectively.34–37

The Class III NAD+-dependent HDACs – called sirtu-

ins, because of their homology to the yeast ortholog silent

information regulator 2 (SIR2)38 – comprise seven mam-

malian sirtuins, all expressed in the brain.39 SIRT 1, 2, 6,

and 7 are found in both the cytoplasm and nucleus, while

SIRT 3, 4, and 5 are found localized to the mitochon-

dria.40,41

Aside from histones, SIRT1 deacetylates transcription

factors such as TBP-associated factor 68 (TAF68), p53,

p300, and peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PGC-1a).42–45 SIRT2 deacet-

ylates cytosolic transcription factor p65, a subunit of

nuclear factor kB (NF-kB), thus indirectly regulating the

expression of NF-kB-dependent genes.46 Interestingly,

SIRT2 overlaps with HDAC6 in its ability to deacetylate

a-tubulin.47

SIRT 3, 4, and 5 determine the global lysine-acetylation

level, especially in mitochondria.6 SIRT3, possibly the pre-

dominant member of this subgroup, plays a major role in

regulating energy metabolism through its effects on

removing the acetyl group from acetyl-coenzyme A syn-

thase 2 (ACS2), glutamate dehydrogenase (GLDH), isoci-

trate dehydrogenase 2 (IDH2), and the electron transport

complex I.48–50 SIRT3 also regulates apoptosis by deacety-

lating nicotinamide phosphoribosyltransferase (NAMPT)

and mitochondrial ribosomal protein L10 (MRPL10) in

mitochondria and Ku70 in the nucleus.51–53 SIRT4 has

recently been shown to regulate lipid metabolism by

deacetylating malonyl CoA decarboxylase (MCD).54

SIRT5 on the other hand regulates the urea cycle by de-

acetylating carbamoyl phosphate synthetase 1 (CPS1).55

SIRT6 deacetylates the C-terminal-binding protein (CtBP)

interacting protein and the acetyl transferase general con-

trol nonderepressible 5 (GCN5).56,57 SIRT7 increases cel-

lular resistance to cytotoxic and oxidative stress through

p53 deacetylation.58

The Class IV HDAC family consists solely of

HDAC11.59 Mainly found in the nucleus, little is known

about its substrates except that it is expressed across

development in the mammalian central nervous system

(CNS) and possibly regulates inflammation through its

inhibitory effect on interleukin 10 (IL-10) expression.60,61

A comprehensive overview of HDAC superfamily is

shown in Table 1.

HDACs and Neurodegeneration

Histone substrates and the translational
role of HDACs

Histone acetylation occurs on the N-terminal tails of

histones, reducing the basic charge of histones to promote

an open, trancription-promoting conformation of chro-

matin. In addition, the residues themselves provide dock-

ing sites for transcription factors/activators including

ATP-dependent chromatin modulators.62 By keeping hi-

stones deacetylated, HDACs repress gene expression.9 In

this sense, they work against histone acetyl transferases

(HATs) that acetylate histones and activate gene expres-

sion. Histone acetylation, to be sure, is only one of several

histones and DNA covalent modifications that modulate

chromatin topology – the so called “epigenome.” Since

these modifications are highly synchronized, HATs and

HDACs play important roles in mediating these changes.

There are two ways by which histone modulation via

HDACs plays a role in neurodegeneration. In the first, a

disease is caused by an HDAC-dependent transcriptional
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decrease in the level of a certain protein, resulting in dis-

ease by a “loss of function” mechanism. In the second,

the mutation causes widespread transcriptional deficits

across the genome. These are best explained in the con-

text of specific neurological disorders, as described below.

HDACs and gene silencing at a specific locus

Friedreich ataxia

Friedreich ataxia (FRDA), the most common autosomal

recessive ataxia, is an excellent example of the scenario

where HDAC-dependent transcriptional silencing at a

particular disease locus causes loss of expression of a cru-

cial protein to result in neurodegeneration.

FRDA is characterized by ataxia and sensorimotor neu-

ropathy, sometimes associated with vision and hearing

loss, along with non-neurological manifestations of

cardiomyopathy and diabetes. It is caused by a pathogenic

GAA tri-nucleotide expansion in the first intron of the

frataxin (FXN) gene. The product of this gene participates

in the mitochondrial biogenesis of Fe-S clusters – essential

cofactors involved in many metabolic pathways.63–65 How

this function relates to neurodegeneration is still unclear.

Regardless, there is growing evidence in FRDA cell and

mouse models that GAA triplet expansion induces the

FXN gene to be silenced, leading to FRDA by loss of its

function.66–68

FXN silencing takes place through a mechanism of het-

erochromatinization mediated by histone hypoacetylation.

This inference stems from the finding that long GAA

repeats suppress transcription of a nearby reporter gene69;

moreover, chromatin immunoprecipitation (ChIP) exper-

iments show a significant enrichment in heterochromatin

marks such as hypoacetylation of specific lysine residues

on histones around the trinucleotide repeats and on the

promoter. This enrichment has been observed on residues

H3K9 and H3K14 of histone H3, and H4K8, H4K12, and

H4K16 of histone H4.70–75 These changes are accompa-

nied by other epigenetic processes that interfere with

transcription – in particular tri-methylation of histone

lysine residues (including H3K9 and H3K27)76; enhanced

cytosine methylation in the CpG residues in the DNA

region upstream of the expanded triplet (as demonstrated

by sodium bisulfite sequencing72); increased expression of

a frataxin antisense transcript (FAST1) that promotes the

spreading of DNA methylation (by decreasing the binding

of the CTCF protein)77; and finally non-canonical struc-

tures subsumed by the locus itself because of the trinu-

cleotide expansion.75 The relative importance of each of

these events to silencing is unclear, but histone hypoacet-

ylation is clearly important, given that inhibiting HDACs

can rescue FXN expression.

One of the first studies evaluating HDAC inhibitors

showed that the broad spectrum Class I and II HDAC

inhibitor sodium butyrate (see Table 2) produced an

increase in the activity of a FXN-EGFP reporter enhanc-

ing EGFP expression by ~15%.78 Subsequent experiments

on primary lymphocytes from FRDA patients treated with

novel benzamide-derived HDAC inhibitors showed even

greater effects on FXN expression with potentially less

toxicity compared to previously available inhibitors;

moreover, ChIP assays mechanistically demonstrated that

FXN reactivation was coupled with increased acetylation

of histones H3 and H4 in the chromatin region immedi-

ately upstream of the GAA repeats.71 These inhibitors

have shown promise in two FRDA models, given that

they increase FXN expression in the brain and ameliorate

the disease phenotype.79,80 Since the inhibitors tend to

target HDAC381 and have shown the most promise in the

FRDA mouse models, a concerted effort has been directed

at developing yet more potent and specific inhibitors for

HDAC3.82 A phase I clinical trial for one of these

compounds (109/RG2833) has been recently completed,

demonstrating that the drug increases FXN mRNA levels

Table 2. Classification of the most common HDAC inhibitors.

HDACi class Representative HDACi Specificity References

Hydroxamates Trichostatin A (TSA), vorinostat,

panobinostat, tubastatin A, tubacin

Pan-inhibitors for class I-II HDACs (TSA,

vorinostat, panobinostat), HDAC6

specific (tubastatin A and tubacin)

205, 206, 207, 208

Cyclic peptides Romidepsin, apicidin, cyclic

hydroxamic acid-containing

peptides (CHAPs)

Class I HDAC selectivity 209

Aliphatic acids Butyrate, phenyl-butyrate, valproate Pan-inhibitors for class I-II HDACs 210

Benzamides MS-275, 4b, 106, 109 Class I specific 211, 212

Sirtuin inhibitors Nicotinamide, sirtinol, AGK-2, AK-7,

splitomicin

Pan-inhibitor (nicotinamide), SIRT2

specific (sirtinol, AK-7, splitomicin)

213, 214, 215, 216, 217

HDAC, histone deacetylase.
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and H3K9 acetylation in peripheral blood mononuclear

cells (PBMCs) of FRDA patients.83 There is also evidence

to suggest that Class III HDACs are equally important in

FXN silencing, given that the sirtuin inhibitor nicotin-

amide increases histone H3 and H4 acetylation, decreases

H3K9 and H3K27 trimethylation, and reverses the silenc-

ing at the FXN locus.84 A recently concluded phase II

clinical trial for nicotinamide corroborated this evidence

by showing that daily doses induce a sustained upregula-

tion of FXN expression along with reduced heterochro-

matin modifications at the FXN locus in PBMCs of

FRDA patients.85

Fragile X syndrome

Fragile X syndrome (FXS) – an X-linked disease charac-

terized by mental retardation, neurobehavioral abnormali-

ties and autistic features – is another disease where

silencing of a specific gene product is caused by histone

hypoacetylation alongside other epigenetic events. As with

FRDA, FXS is caused by a trinucleotide expansion,

though this time in the FMR1 gene, and the gene product

fragile X mental retardation protein (FMRP) – a protein

that regulates neuronal mRNA metabolism86 – is not

expressed. Also unlike FRDA, the FXS expansion is a

CGG expansion (not a GAA expansion) and occurs in the

part of the gene encoding the 50-UTR (not in the intron).

There are many similarities between FXS and FRDA

with respect to the complex, spatio-temporally regulated

heterochromatinization process that causes silencing at

the FMR1 locus.87–91 These events have been best eluci-

dated in a human embryonic FXS stem cell line that reca-

pitulates the developmental hallmarks of gene

expression.92 ChIP experiments demonstrate that histones

H3 and H4 undergo progressively greater hypoacetylation

accompanied by histone hypermethylation marks that are

associated with gene silencing. It is interesting to note

that some of the methylation changes (H3K9Me2,

H3K27Me3) occur along the entire exon 192; while others

(H3K9Me3 and H4K20Me3) occur focally around the tri-

nucleotide repeat expansion.89,93 Later, aberrant DNA

methylation takes place at CpG residues within CGG

repeats and spreads to the upstream promoter region,92

preventing the binding of transcription factors such as a-
PAL/nuclear respiratory factor 1 (NRF1), that are

required for FMR1 expression.94,95

HDAC inhibitors as in FRDA have been tested for

their ability to rescue expression at the FMR1 locus.

Results have varied. Trichostatin A (TSA), a pan-inhibi-

tor for HDAC classes I-II, was able to rescue the expres-

sion of a thymidine kinase TK-(CGG)n reporter in

Xenopus oocytes96; however, TSA, as well as the pan-

inhibitors valproate and butyrate, showed only minimal

success in reactivating the FTR1 gene in FXS patients’

lymphoblastoid cells.97,98 Notably, better results were

obtained with the class III inhibitor nicotinamide com-

pared to class I-II inhibitors, suggesting that sirtuins are

the preferential HDACs for the FMR1 locus.99 Interest-

ingly, when 5-azadeocytidine – a DNA methylation

inhibitor – was combined with HDAC inhibitors, a

much greater rescue on FMR1 transcription was

observed.97 Altogether, these results suggest that DNA

methylation rather than histone deacetylation may be the

primary epigenetic mechanism to cause repression at this

locus.

Fragile X tremor ataxia syndrome

Fragile X tremor ataxia syndrome (FXTAS) is a late onset

neurodegenerative disorder characterized by global brain

atrophy, progressive gait ataxia, tremor, dementia, and

neuropsychological deficits.100 FXTAS is related to FXS in

that it also results from a pathogenic GAA expansion in

the FMR1 gene. However, while in FXS the expansion ex-

cedes 200 repeats, the number of GAA repeats in the con-

text of FXTAS is limited to 55–200 units. Unlike the full

mutation in FXS, this smaller expansion – known as

“pre-mutation” – does not induce FMR1 gene silencing.

On the contrary, the premutated gene is transcribed at

2- to 10-fold higher levels than the normal allele.101 As a

consequence, expanded FMR1 transcript accumulates

within the nucleus where it sequesters important RNA-

binding proteins such as heterogeneous nuclear ribonu-

cleoprotein (hnRNP) A2/B1, purine-rich single-stranded

DNA-binding protein a (PUR-a), Src-associated substrate

in mitosis 68 (SAM68), and DiGeorge syndrome critical

region 8 (DGCR8).102–105 This RNA toxic gain-of-func-

tion mechanism is believed to trigger neurodegeneration

in FXTAS.

Recent evidence suggests that alteration in chromatin

structure at the FMR1 locus rather than increased RNA

stability is the main cause for enhanced expression of the

premutated gene. Indeed, ChIP experiments on both lym-

phoblastoid cell lines and fibroblasts from premutation

carriers and FXTAS patients have highlighted increased

levels of acetylated H3K9 and H4 in the regions directly

surrounding the CGG repeats.106 Consistent with this

model, pharmacologic inhibition of HATs was shown to

decrease FMR1 expression in lymphoblastoid lines from

premutation carriers.106 Furthermore, the overexpression

of several HDACs (HDAC 3, 6, and 11) was able to sup-

press the accumulation of (CGG)90-eGFP mRNA and res-

cue neurodegeneration in a fly model of FXTAS.106 These

results suggest that the treatment strategy in FXTAS –
unlike FXS – would be to increase HDAC activity rather

than suppress it by inhibitors.
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Reversing gene silencing at a specific locus by
decreasing HDAC activity

Besides the aforementioned diseases, there are others

where HDACs are not implicated in silencing at a gene

locus per se; yet inhibiting HDACs can promote the

expression of a protein with translational potential. Spinal

muscular atrophy (SMA) and Niemann Pick type C

(NPC) are two such examples.

Spinal muscular atrophy

SMA is a pediatric neuromuscular disorder characterized

by the destruction of a-motor neurons in the anterior

horn of the spinal cord and subsequent system-wide mus-

cle wasting.107 SMA is caused by insufficient levels of the

protein SMN (survival motor neuron), a protein impli-

cated in pre-mRNA splicing, mRNA transport, and axonal

growth.108,109

In humans, two genes encode for SMN: the telomeric

survival motor neuron 1 (SMN1) gene and its centromer-

ic paralog survival motor neuron 2 (SMN2). In SMA

SMN1 is disrupted by either homozygous deletions or

nonsense mutations. Thus, in the disease state SMN levels

are determined entirely by SMN2 activity. However, over

evolution a single-nucleotide substitution has affected the

splicing of exon 7 at the SMN2 locus, resulting in reduced

levels of functional SMN.110 Since SMN2 copy number

differs in the population (ranging from 1 to 5 copies), the

severity of the disease inversely correlates with this vari-

able and the relative SMN amount. Thus, a tantalizing

strategy for improving the disease might be to increase

SMN protein levels from the SMN2 locus.107

Detailed ChIP analysis of the SMN2 promoter in

embryonic and adult mouse tissues have revealed that

SMN2 expression is downregulated during development

by HDAC1-2 activity through the deacetylation of

histones H3 and H4 in the vicinity of the transcriptional

start site.111

Several inhibitors of class I and II HDACs (including

butyrate, valproate, phenyl-butyrate, and vorinostat) have

proved effective in upregulating SMN2 expression in fi-

broblasts from SMA patients.112–114 In a study employing

a motor neuron-derived cell line, vorinostat and valproate

enhanced SMN2 promoter activity by increasing histone

H3 and H4 acetylation in its upstream regions.111 HDAC

inhibitors can activate SMN2 expression in SMA mice as

well, with TSA and vorinostat causing an increase in

SMN2 transcript and SMN protein levels in neural and

muscle tissues associated with improved survival, weight

loss, and motor behavior.115,116

Valproate has been tested on both pediatric and adult

SMA patients with mixed results. Four initial open label

trials highlighted a potential benefit for strength and

motor function.117–120 However, a subsequent phase II

trial failed to show significant improvement in SMA chil-

dren.121,122 Also, a double-blind phase III trial in ambula-

tory SMA adults failed to shown any significant results.123

Another randomized placebo-controlled phase III trial of

valproate is in the recruiting phase (registered at Clinical-

Trials.gov with identifier number NCT01671384).

Niemann-Pick type C

This disease is characterized by aberrant lipid accumula-

tion in the endosomal/lysosomal compartment leading to

progressive neurological degeneration.124 Together with

Niemann Pick Types A and B, NPC is part of a group of

inherited disorders whose phenotypes are classified based

upon the organs involved and the age of onset.125 NPC is

caused by missense mutations in NPC1 and NPC2 genes

(95% and 5% of cases, respectively),126 encoding lyso-

somal proteins – NPC1 and NPC2, respectively – that

bind cholesterol and promote its transfer to other cell

membranes.127,128 Studies on patient fibroblasts carrying

the most common NPC mutation (NPC1I1061T) have

shown that the mutated protein is retained in the endo-

plasmic reticulum and is subjected to proteosomal degra-

dation. This results in an 85% reduction in protein

levels.129 Remarkably, the mutant protein is still func-

tional, as evidenced by the finding that overexpression of

NPC1I1061T is able to restore cholesterol trafficking in fi-

broblasts,129 suggesting that an effective strategy might

well be to promote the expression of just the mutant

protein.

Since NPC1 expression depends on histone acetylation,

attempts have been made to increase NPC1 levels by

HDAC inhibitors. Experiments in vitro using fibroblasts

from human patients show that panobinostat, TSA,

butyrate, and vorinostat – and the more selective class I

inhibitor thiophene benzamide – can promote NPC1

expression and correct cholesterol accumulation.130,131

NPC2 appears to be less amenable to HDAC inhibi-

tion.131 Nevertheless, since 95% of Niemann Pick patients

have a mutation in NPC1, a phase I study has been

started with the HDAC inhibitor vorinostat in this patient

population (registered at ClinicalTrials.gov with identifier

number NCT02124083).

Histone acetylation and HDAC involvement at
multiple loci across the genome

Another mode of transcriptional dysregulation consists in

an HDAC-dependent transcriptional misregulation of

genes other than the gene bearing the mutation. The

mechanism of transcriptional derangements is thought to
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occur because of a build up of mutant protein that tends

to cause transcriptional repression by a “gain of function”

mechanism. Polyglutamine diseases are examplars of this

mechanism.

Polyglutamine diseases

Polyglutamine disorders are a group of nine neurodegener-

ative syndromes where a cytosine, alanine and guanine

(CAG) nucleotide expansion in the protein-coding region

of the culprit gene causes a pathogenic glutamine

repeat.132–135 These diseases have several features in com-

mon including a typical midlife delayed onset and a

tendency for the repeat tract to expand on transmission to

offspring, causing more severe disease and earlier onset

over generations. The proteins that carry polyglutamine

mutations are otherwise unrelated; they include huntingtin

in Huntington’s disease, ataxins 1, 2, 3, and 7 in the

respective numbered spinocerebellar ataxia (SCA)

syndromes, a1A calcium channel subunit in SCA6, TATA-

binding protein (TBP) in SCA17, androgen receptor (AR)

in spinal bulbar muscular atrophy (SBMA), and atrophin-

1 in dentatorubropallidoluysian atrophy (DRPLA). Even

though the proteins involved and indeed the neuronal

populations can be quite distinct, there are many similia-

ries at a molecular level. There is a growing theme, for

instance, of altered clearance and build up of mutant pro-

teins that lead to toxicity. This build up was first noticed

by the evidence of protein aggregates or inclusions.

Although the role of inclusions is still debated, the consen-

sus in the field is that the polyglutamine disease belongs to

the broader class of protein misfolding diseases where the

misfolded proteins defy clearance by the normal chaperone

assisted degradation systems, be they proteasomal or lyso-

somal, to cause toxicity by a gain-of-function mechanism.

Even though we do not yet know how pathogenesis

ensues, one compelling mechanism is transcriptional mis-

regulation stemming from alteration in histone acetyla-

tion. The evidence for this is compelling. First, all the

disease-causing polyglutamine proteins are either tran-

scriptional activators or repressors or indirectly involved

with gene expression (see Table 3). In many of the poly-

glutamine diseases, HATs such as CREB-binding protein

(CBP), PCAF, and GCN5 (a component of the STAGA

Table 3. Role and interactors of the polyglutamine proteins.

Disease Protein Role Interactors References

Huntington’s disease Huntingtin Transcriptional

repressor

Specificity protein 1 (SP1), transcription initiation factor

II 130 kDa (TAFII130), CREB-binding protein (CBP), p53,

SIN3A, RE1-silencing transcription factor (REST),

nuclear receptor co-repressor (NCoR), nuclear factor

kB (NF-kB), methyl-CpG-binding protein 2 (MeCP2), p300

218, 120, 219, 220,

221, 222, 223

SCA1 Ataxin-1 Transcriptional

repressor

Silencing mediator for retinoid or thyroid-hormone

receptor (SMRT), nuclear receptor corepressor (NCoR),

SIN3A, growth factor independent 1 (GFI1),

Tat-interactive protein 60 kDa (TIP60), capicua (CIC),

leucine-rich acidic nuclear protein (LANP), ubiquilin 4

224, 225, 226, 227,

228, 229

SCA2 Ataxin-2 Translation

regulator

Ataxin 2-binding protein 1 (A2BP1), transactive response

DNA-binding protein 43 kDa (TDP-43), DEAD/H box

RNA helicase (DDX6), poly-adenylate-binding protein

cytoplasmic 1 (PABPC1)

230, 231, 232, 233

SCA3 Ataxin-3 Transcriptional

repressor

Forkhead box O4 (FOXO4), transcription initiation

factor II 130 kDa (TAFII130), nuclear receptor

corepressor (NCoR), radiation-sensitive 23 (RAD23),

CREB-binding protein (CBP)

234, 235, 236, 237, 137

SCA7 Ataxin-7 Transcriptional

repressor

Cone-rod homeobox (CRX), R85, general control

nonderepressible 5 (GCN5)

238, 239, 140

SCA6 a1A Transcription

factor

cAMP response element-binding protein (CREB) 240

SCA17 TBP Transcription

factor

Transcription factor IIB (TFIIB), nuclear factor Y (NFY),

TATA-binding protein-associated factor 172 (TAF-172)

241, 242

SBMA AR Transcription

factor

p160, p300, transcription factor IIF (TFIIF), TBP, b-catenin 243, 244, 245, 246

DRPLA Atrophin-1 Transcriptional

repressor

SIN3A, eight twenty-one/myeloid translocation gene

(ETO/MTG), G9a, Nedd-4, CREB-binding protein (CBP)

247, 248, 249, 139

SCA, spinocerebellar ataxia; SBMA, spinal bulbar muscular atrophy; DRPLA, dentatorubropallidoluysian atrophy.
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transcription coactivator complex) are sequestered from

their normal functions.136–140 Furthermore, in some

instances, polyglutamine proteins can inhibit HAT activity

by masking the access of HATs to their histone substrates

through direct interactions with histones.141–144

Several attempts have been made to pharmacologically

reverse hypoacetylation of downregulated genes by inhib-

iting HDAC activity (see Table 4). So far, phase II trials

have been encouraging. Low doses of phenyl-butyrate

have been shown to correct transcriptional abnormalities

in the blood of Huntington’s disease patients145 and

increase the renal excretion of potentially neurotoxic

indole metabolites as seen in a recent phase II study on

individuals with early symptomatic Huntington’s dis-

ease.146 This last finding might represent a secondary

therapeutic effect of phenyl-butyrate in addition to its

HDAC inhibition activity.

It is interesting to note that genetic rescue of different

HDACs using haploinsufficiency has been tested for

HDAC3 in SCA1,147 and HDACs 3, 4, and 7 in the case

of Huntington’s disease.148,149 Only haploinsufficiency of

HDAC4 was able to improve the phenotype in the context

of Huntington’s disease mouse models.150 It should be

pointed out that, haploinsufficiency at the genomic locus,

Table 4. Pharmacologic HDAC inhibition of polyglutamine diseases.

Disease model HDAC inhibitor Outcome References

Huntington’s disease

Httex1p Q93 fly Vorinostat, butyrate Reduced photoreceptor neuron degeneration, increased viability 223

R6/2 mouse Vorinostat Improved motor functions 250

Htn 150Q

Caenorhabditis elegans

TSA Reduced neuronal degeneration 251

R6/2 mouse Phenyl-butyrate Rescue of transcriptional aberrancies 252

Httex1p Q93 fly Sirtinol, nicotinamide,

niacin, butyrate

Reduced photoreceptor neuron degeneration 253

N171-82Q mouse Valproate Extended survival, improved motor functions 254

R6/1 mouse Nicotinamide Improved motor functions, increased BDNF brain levels 255

R6/2 mouse Butyrate Extended survival, improved body weight and motor

performance, delayed neurpathological features

256

N171-82Q mouse Phenyl-butyrate Extended survival, decreased brain atrophy 257

R6/2 mouse 4b Ameliorated alterations in gene expression, improved motor

performance, overall appearance, and body weight

212

R6/2 mouse,

Httex1p Q93 fly

4b, 136, 233,

971, 974

Rescue of transcriptional aberrancies, reduced

photoreceptor neuron degeneration

258

R6/2 mouse SAHA Reduced aggregate load and restoration of Bdnf

transcript levels

259

N171-82Q mouse 4b Prevention of body weight loss, improved motor

functions, reduced cognitive decline, prevention of

aggregate formation in the brain

260

N171-82Q mouse,

YAC128 mouse

Valproate Improved motor functions and decreased

depressive behaviors

261

Httex1p Q93 fly,

Htn 150Q C. elegans

AGK2, AK-1 Reduced photoreceptor neuron degeneration,

improvement in touch response

262

R6/2 mouse, 140Q

knock-in Htt mouse

AK-7 Improved motor function, extended survival, reduced brain

atrophy, reduced brain aggregates

263

SCA3

ATXN3-79Q mouse Butyrate Delayed disease onset, extended survival, improved

neurological phenotype, reduced gene repression

264

ATXN3-78Q fly Valproate Extended survival, alleviated climbing disability,

reduced photoreceptor neuron degeneration

265

ATXN3-79Q mouse Butyrate Prevention in long-term depression (LTD)

induction impairment

266

SBMA

AR-97Q mouse Butyrate Improved motor functions, improved

neuropathological phenotype

267

DRPLA

ATN1-118Q mouse Butyrate Extended survival, improved motor function 268

HDAC, histone deacetylase; SCA, spinocerebellar ataxia; SBMA, spinal bulbar muscular atrophy; DRPLA, dentatorubropallidoluysian atrophy.
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does not always translate into a 50% reduction in protein

levels – possibly on account of compensatory mecha-

nisms.147,148 In these mice, complete null phenotypes die

either as embryos or in early perinatal life.3 But even a

complete knockdown where it can be achieved with mini-

mal neuronal side effects – as was done with HDAC6 and

SIR2 – does not rescue the polyglutamine phenotype as

seen in the context of the R6/2 Huntington’s disease

mouse model.151,152 One must admit that genetic studies

are not the same as pharmacological studies where the

dosages and length of duration of drugs can be altered.

Nevertheless, the relative genetic lack of amelioration does

raise the possibility that HDAC inhibitors might have off-

target beneficial effects as well.

Nonhistone substrates and additional role
for HDACs

As mentioned earlier, HDACs also deacetylate proteins

other than histones, thus playing a broader role in cell

biology. The most relevant to neurodegeneration is tubu-

lin deacetylation mediated by HDAC6 and SIRT2 that

modulates the properties of microtubules. It appears that

acetylation at a conserved lysine K40 on tubulin must be

tightly regulated for movement of organelles mediated by

the molecular motors kinesin and dynein.153 Undoubt-

edly, this is especially important for neurons that must

transport cargo along long distances. Indeed, increasing

tubulin acetylation by drugs that inhibit HDAC6 and

SIRT2 activity (tubacin and nicotinamide, respectively)

improves axonal transport in primary neurons and pre-

vents colchicine-induced axonal degeneration.154,155 For

this reason, such an approach has been tried in neurode-

generative disorders that affect neurons with particularly

long neurites, especially considering that a reduction in

acetylated a-tubulin levels is one of their pathological

hallmarks.156,157 Some of the best examples involve dis-

eases where long neurons are affected such as Charcot-

Marie-Tooth disorders (CMT) and amyotrophic lateral

sclerosis (ALS).

CMT disease

CMT is the term given to a group of genetic diseases that

affect the peripheral nervous system to cause progressive

distal muscle weakness and atrophy associated with

sensory problems.158 More than 40 genes have been

linked to CMT that can follow a pattern of autosomal

dominant, autosomal recessive, or X-linked inheritance.159

Despite the genetic heterogeneity, pathogenicity converges

on defects in cytoskeletal dynamics and axonal transport

of peripheral neurons.160 The role of tubulin acetylation

has been recently addressed in a mouse model of CMT-

expressing mutant HSPB1 – one of the 27 kDa small heat

shock proteins – that recapitulates several features of the

CMT phenotype including severe axonal transport defects

coupled with reduced levels of acetylated a-tubulin.161

The treatment of primary dorsal root ganglia (DRG) neu-

rons from these mice with either TSA or the HDAC6-spe-

cific inhibitors tubacin and tubastatin A restored the

number of total mitochondria and increased those that

move along axons.161 Remarkably, in vivo administration

of TSA or tubastatin A to symptomatic mice rescued axo-

nal transport defects via increasing acetylated a-tubulin
levels in peripheral nerves and promoting muscle reinner-

vation as well.161

Amyotrophic lateral sclerosis

ALS, a devastating progressive neurodegenerative disorder,

is characterized by muscle weakness, fasciculations, and

spasticity leading ultimately to death.162 Affecting both

upper and lower motor neurons, axonal transport defects

are highly relevant to pathogenesis.163 Besides sporadic

ALS, a growing number of ALS-genes have been identified

including superoxide dismutase 1 (SOD1), optineurin

(OPT), ubiquilin 2 (UBQLN2), chromosome 9 open read-

ing frame 72 (C9orf72), TAR DNA-binding protein

(TARDBP), fused in sarcoma (FUS), angiogenin (ANG),

amyotrophic lateral sclerosis 2 (ALS2), and senataxin

(SETX).164–166 Most of the work testing the role of tubu-

lin acetylation in ALS has been conducted in SOD1G93A

mice that represent the best studied model of familial

ALS. Genetic ablation of HDAC6 positively affected the

levels of acetylated tubulin in the central and peripheral

nervous system and maintained motor axon integrity.

There was a significant increase in the compound muscle

action potential (CMAP) and an improvement in the

number of quantified neurons in the ventral horn of the

spinal cord, along with a significant improvement in

survival.167 Even though SIRT2 shares the ability to de-

acetylate tubulin in vitro, it does not appear to play a role

in ALS, given that genetically depleting both copies of

SIRT2 in SOD1G93A mice did not change either tubulin

acetylation levels or ALS phenotype, suggesting that

HDAC6 is the principal tubulin deacetylating enzyme of

the nervous system in vivo.167

It is interesting to note that the pan-HDAC inhibitors

TSA or sodium phenylbutyrate ameliorated motoneuron

death and axonal degeneration and enhanced motor func-

tions in the SOD1G93A mouse model. This could be

occurring via beneficial effects on gene transcription as

described for the polyglutamine diseases or axonal trans-

port through its effect on tubulin acetylation.168,169 In

recent phase II studies, phenyl-butyrate was demonstrated

safe and able to increase histone acetylation in blood of
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ALS patients at low dosage,170 while valproic acid was

also found safe, but showed no beneficial effects on sur-

vival or disease progression.171

Alzheimer’s, Parkinson’s diseases and
polyglutamine diseases

Given the importance of axonal transport to all neurons,

it is likely that modulating tubulin acetylation might be

an approach to other disorders of the nervous system.

For instance, in Alzheimer’s disease (AD) the HDAC6-

specific inhibitor tubastatin A was shown to recover mito-

chondrial axonal transport in primary hippocampal

neurons exposed to the neurotoxic Ab-peptide172 and

impressively was also effective in rescuing cognitive defi-

cits and reducing tau levels in a mouse model of AD

(rTg4510 mice).173 HDAC6 null mutations were demon-

strated to correct tau-induced microtubule defects in a fly

model as well.174 Genetic depletion supports these phar-

macological studies, given that complete knockout of

HDAC6 restored learning and memory in a severe AD

model (APPPS1-21 mice) by rescuing axonal transport.175

However, the beneficial effects of depleting HDAC6 might

not just stem from its action on microtubules per se, but

also from its effects on tau, which, once acetylated, is

protected from pathogenic hyperphosphorylation and

aggregation.176

In Parkinson’s disease (PD), broad HDAC inhibitors

rescue a-synuclein-dependent cytotoxicity both in cellular

and fly models of the disease.177 They also alleviate motor

deficits and attenuate depletion of striatal dopaminergic

neurons in PD mouse models —be they neurotoxic

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-, rotenone-

and 6-hydroxydopamine-induced) or genetic (A30P+
A53T a-synuclein double transgenic mice).178–181 Given

that alterations in axonal transport have been observed in

PD models, these beneficial effects are likely to occur also

via inhibition of HDAC6 – although HDAC6 has yet to

be tested directly.

In this context, it is possible that the beneficial effects

of HDAC inhibition discussed earlier in polyglutamine

disease also occur to some extent because of an improve-

ment in axonal transport mediated by HDAC6 inhibition.

Indeed, tubacin ameliorates axonal transport of brain-

derived neurotrophic factor (BDNF) in primary striatal

neurons from HdhQ109 knock-in mice.157 However,

inhibiting HDAC6 in the context of misfolding disorders

appears to be a double edged sword, given that HDAC6

binds both ubiquitinated proteins and dynein motors,

facilitating their transport to aggresomes.182 Moreover,

HDAC6 promotes the formation of an actin-network

via cortactin deacetylation, inducing aggresome-lysosome

fusion for autophagic degradation.183 In addition,

HDAC6 also plays a beneficial role in modulating the

activity of the chaperone HSP90 via reversible acetyla-

tion.184 Thus, HDAC6 might prevent aberrant protein

accumulation in the nervous system as demonstrated in a

fly model of SBMA characterized by neuronal-mutant AR

aggregates.185

Future Trends and Concluding
Remarks

HDACs appear to be important players in neurodegenera-

tion. Surprisingly, despite their promise, the functions of

HDACs in the nervous system have not been comprehen-

sively studied. Although pharmacological HDAC inhibi-

tion is one way to learn about the functions of HDACs,

genetic depletion studies, particularly in neurons, are

probably easier to interpret. given that there are no con-

founding off-target effects – since even the most selective

drugs are not absolute in their specificity.

This research program is still lagging. For instance, only

recently, we have found that depleting HDAC3 in post-

mitotic neurons can be quite deleterious.147 Our experi-

ments were performed by deleting HDAC3 in Purkinje

neurons and it is not clear at this point whether these

neurons are more vulnerable to HDAC depletion than

others. But it certainly suggests that deleting HDAC3 in

some neuronal populations for a long period is likely to

have side effects. It is important to perform similar exper-

iments for additional neuronal populations and for all

neuronal HDACs individually to see whether these are

also essential for neuronal health. A by-product of these

studies will be that we will learn about the genetic

networks that are regulated by individual HDACs using

RNA-seq or microarray experiments. These studies are

still in their infancy. This is largely because time-consum-

ing conditional approaches have to be used, given that

most of the HDAC constitutive knockout mice are

embryonic lethal (HDAC1, HDAC3, and HDAC7) or die

within a few weeks after birth (HDAC2, HDAC4, HDAC8,

and SIRT6).3,186 Those where HDACs have been depleted

in neuronal tissues have often focused on early develop-

mental stages that are not so applicable to insights into

neurodegeneration (see Table 5). A thorough analyis of

HDAC depletion in the adult nervous system should pro-

vide a reasonable idea of what to discern in terms of side

effects and how they might be prevented. These studies

then could be carefully interpreted in conjunction with

cell-based mechanistic studies or in vivo studies manipu-

lating HDAC levels in mice. For instance, conditional

deletion studies in the adult brain have highlighted the

opposite effects of class I and II HDACs on memory for-

mation. Indeed, selective ablation of HDAC2 in the fore-

brain or HDAC3 focal deletion in the hippocampus
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greatly improved cognitive performances in mice.187,188 In

contrast, the selective knockout of HDAC4 in the fore-

brain impaired learning, memory formation, and long-

term synaptic plasticity.189 The positive effects of HDAC4

on cognitive functions seem to be mediated via the

repression of a specific set of genes encoding constituents

of central synapses.190 Interestingly, although HDAC5 is

closely related to HDAC4, its genetic ablation in the adult

brain did not impair cognitive performances, but other-

wise affected behavioral adaptations to chronic emotional

stimuli.191 Similarly, ablation of HDAC6 in serotonin

neurons blocked the expression of social avoidance in

mice exposed to chronic social defeat.192 SIRT1-knockout

mice exhibit impaired cognitive abilities associated with

defects in synaptic plasticity.193 Moreover, SIRT1 is

expressed in several hypothalamic regions controlling

endocrine functions and feeding behaviors, as well as the

regulation of circadian rhythmicity.194,195 A list of

neuronal phenotypes for all knockout mice is shown

in Table 6.

In addition, cell-based studies on primary neurons sug-

gest that some HDACs regulate neuronal survival and

death. For instance, HDAC1 can be either neuroprotective

or neurotoxic, based on whether it interacts with HDAC9

or HDAC3.196 HDAC3 itself is highly neurotoxic, as dem-

onstrated by overexpressing HDAC3 in cortical and gran-

ule neurons.197 Also the overexpression of class II

HDAC5 in cerebellar granule neurons compromises their

survival via transcriptional repression of MEF2.198 In con-

trast, overexpression of HDAC4 protects granule neurons

from low potassium-induced apoptosis. HDAC4’s neuro-

protective effects seem to be mediated through the inhibi-

tion of cyclin-dependent kinase 1 (CDK1) activity and

cell cycle progression.199 Also, overexpressing HDAC9 was

shown to rescue apoptosis in granule neurons. HDAC9

anti-apoptotic activity is connected to the inhibition of c-

jun via direct interaction with c-jun N-terminal kinase

(JNK).200 Sirtuins play important functions in neuronal

survival as well. Overexpression of SIRT1 and SIRT5 was

shown to protect granule neurons from low potassium-

Table 5. Roles of HDACs in the nervous system development.

Gene Experimental model Phenotype References

HDAC1/

HDAC2

HDAC1/HDAC2 conditional knockout mice

(glial fibrillary acidic protein (GFAP)-Cre driver)

Abnormal Purkinje cell migration, blockade of

neuronal differentiation, aberrant cell death

in neuronal progenitors

269

HDAC1/

HDAC2

HDAC1/HDAC2 conditional knockout mice

(Olig1-Cre driver)

Defects in oligodendrocytes differentiation 270

HDAC1/

HDAC2

HDAC1/HDAC2 conditional knockout mice

(Wnt1-Cre driver)

Defects in neural crest cells differentiation 271

HDAC4 HDAC4 constitutive knockout mice Purkinje cell death, duplication of Purkinje cell

soma, defects in Purkinje cell arborization

199

HDAC4 P0 mouse retinas transfected with HDAC4-targeting

shRNA vector by in vivo electroporation

Increased apoptosis of photoreceptors and

interneurons during retinal development

272

HDAC5 Primary mouse dorsal root ganglia (DRG) neurons

infected with HDAC5-targeting shRNA lentivirus

Impaired axon regeneration 273

HDAC6 Primary mouse hippocampal neurons transfected

with HDAC6-targeting shRNA vector

Impaired axonal growth and axonal initial

segment development

274

HDAC6 Primary mouse cortical neurons treated with tubacin Impaired axon projections and dendritogenesis 275

HDAC9 Primary mouse cortical neurons transfected with

HDAC9-targeting shRNA vector

Increased dendrite length and more

complex branching pattern

276

SIRT1 Primary rat hippocampal neurons transfected with

SIRT1-targeting siRNA

Retarded axonal elongation and branching 277

SIRT1 Rat pheochromocytoma PC12 cell line transfected

with SIRT1-targeting siRNA

Reduced neurite outgrowth 278

SIRT1 Primary rat hippocampal neurons overexpressing the

dominant negative SIRT1H363T
Reduction in dendritic arbor complexity 279

SIRT1 Mouse neurospheres infected with SIRT1-targeting

siRNA lentivirus

Impaired neuronal differentiation 280

SIRT1 Primary cortical neural progenitor cells (NPCs) from

Sirt1 knockout mice

Prevention of oxidation-mediated

suppression of neurogenesis

281

SIRT2 Sirt2 conditional knockout mice (myelin protein

zero (MPZ)-Cre driver)

Delay in myelination of peripheral nerves 282

HDACs, histone deacetylases.
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induced apoptosis, while SIRT2, SIRT3, and SIRT6 over-

expression promotes neuronal death.201 A thorough

evaluation of HDAC function in the nervous system,

particularly with a loss of function approach, would allow

a better understanding of the potential side effects of

these drugs and how best to avert them. Indeed, the

gained knowledge could serve as a guide for designing

HDAC inhibitors with improved selectivity, specificity,

pharmacological properties (pharmacokinetics and

dynamics), and with the least possible side effects. Alter-

natively, pulsed dosing to allow neurons to recover from

side effects could be part of the treatment strategy.
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